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The stability of general linear multidegree of freedom stable potential systems that are
perturbed by general arbitrary positional forces, which may be neither conservative nor
purely circulatory/conservative, is considered. It has been recently recognized that such
perturbed potential systems with multiple frequencies of vibration are susceptible to insta-
bility, and this paper is centrally concerned with the situation when potential systems have
such multiple natural frequencies. An approach based on perturbation theory that includes
nonlinear terms in the expansions of the perturbed eigenvalues is developed. Explicit con-
ditions under which the system either remains stable or becomes unstable due to flutter are
provided. These results show that the stability/instability picture that emerges is far subtler
and more complex than what might be intuitively inferred. The manner in which prior
results related to narrower classes of perturbation matrices, like circulatory matrices, get
included in the more general results obtained here is pointed out. Several numerical exam-
ples illustrate the applicability of the analytical results. An engineering application is pro-
vided demonstrating the power of the analytical results. [DOI: 10.1115/1.4055305]
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1 Introduction
Consider the potential (conservative) system described by the

equation

M̃q̈ + K̃q = 0 (1)

where the n by n real matrix M̃ is a symmetric positive definite matrix
and K̃ is a real symmetric matrix. The n-vector of generalized coordi-
nates is denoted by q, and the dots indicate differentiation. M̃ is the
inertia (mass) matrix and K̃ describes the potential (conservative)
forces. It is well-known that the potential system is stable, i.e., every
solution q(t) of Eq. (1) is bounded for all non-negative t, if and only
if the potential matrix K̃ is positive definite (K̃ > 0), and in this
paper we will assume that this condition is satisfied. It is an important
question from both theoretical and practical points of view to know
how the introduction of disturbing positional forces into system (1)
affects its stability [1]. Positional perturbations arise in many real-life
applications ranging from aerospace structures and aero-elasticity to
brake squeal, wheel shimmy, and bipedal motion [2,3], and the inves-
tigation of the stability of such systems has an old and rich history (see
monographs [2,4–6] and review papers [7–9]).
In recent years, interest in these stability problems has revived,

and it has mainly been focused on purely circulatory force perturba-
tions, both infinitesimal and finite [1,3,10–15]. However, despite
the rich literature that has been developed over numerous decades
of research, our knowledge, even for this rather narrow and
limited class of (positional circulatory) perturbations, still seems
incomplete. In fact, it was only recently observed that the presence
of multiple eigenvalues in stable potential systems is a central cause
in making them unstable under perturbational forces [1].

Furthermore, the “received view” from decades of past investiga-
tions that has been handed down to us is that infinitesimal positional
circulatory perturbations to a stable multidegree of freedom poten-
tial system with multiple frequencies always cause the system to
become unstable. It is only recently, through a more detailed pertur-
bation analysis that considers higher order effects beyond those cap-
tured by linear perturbation theory that this long-held view has been
shown to be incorrect [16]. A considerably more complex picture of
stability is shown to emerge in which stability and instability can
alternate depending on the nature of the circulatory perturbation
and the manner of its interaction with the eigenstructure of the
potential system [16]. Though pointing to a paradigm different
from our long-held received view, these new stability results are,
however, restricted to only the class of infinitesimal circulatory per-
turbation forces. In most real-life situations that arise in nature as
well as in engineered civil, aerospace, and mechanical systems,
the perturbing forces are usually of a more general nature and
they could be circulatory as well as noncirculatory.
This paper explores the question of the stability and instability of

stable multidegree of freedom systems subjected to arbitrary infin-
itesimal positional perturbation forces. As shown here, and as
expected, widening the class of perturbations to which a general
multidegree of freedom, stable potential system is subjected from
those that are described by only circulatory and/or only conserva-
tive matrices to those described by general, arbitrary matrices
make the determination of the stability of such perturbed systems
significantly more complex from a mathematical standpoint. The
results obtained though, compensate for this mathematical com-
plexity by having far greater generality. Since perturbations that
occur in real-life physical systems do not follow the pigeon-holing
done by scientists/engineers/mathematicians, as being only circula-
tory, or only conservative, etc., the compass of applicability of the
results obtained in this paper is much larger. They are therefore
applicable to, and useful for, actual, real-world situations encoun-
tered in nature and in engineered systems. To the best of our knowl-
edge, the results obtained in this paper are new and go well beyond
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those available in the literature to date as well as those obtained in
the references provided.
A stable multidegree of freedom potential system (1) when sub-

jected to a general perturbing positional force is described by the
equation

M̃q̈ + K̃q + εP̃q = 0 (2)

where P̃ is an arbitrary real matrix and ɛ≥ 0 is a dimensionless
parameter which we introduce to characterize the intensity of the
perturbing force.
Making the transformation x = M̃

1/2
q, where the exponent ½ indi-

cates the unique positive definite square root of the matrix M̃, and pre-
multiplying Eqs. (1) and (2) by M̃

−1/2
we get the following equations

that describe the potential system and the perturbed potential system

ẍ + Kx = 0 (3)

ẍ + Kx + εPx = 0 (4)

where the symmetric matrix K = M̃
−1/2

K̃M̃
−1/2

and the matrix

P = M̃
−1/2

P̃M̃
−1/2

. Clearly, system (2) is equivalent to system (4),
and we shall from here on consider this system.
We begin in Sec. 2 with the case when all natural frequencies of the

potential system are distinct and give an estimate of the parameter ɛ
below which system (4) remains stable. The case where we have mul-
tiple natural frequencies is more complex, and it is treated subse-
quently at some length in Sec. 3. Section 4 considers an example
of practical engineering interest which demonstrates the power of
the analytical results obtained herein. Section 5 gives the conclusions.

2 Case of Simple Natural Frequencies
To obtain a sufficient condition for the stability of the systems

under consideration, we first state two lemmas.
LEMMA 1. For a fixed value of the real parameter ɛ, the system

(4) is stable if and only if all eigenvalues of the matrix K+ ɛP are
positive and simple (unrepeated) or semi-simple (i.e., the number
of linearly independent eigenvectors associated with a multiple
eigenvalue of the matrix K+ ɛP coincides with its multiplicity).
Proof. See, for example, [2]. ▪

LEMMA 2. Let A, B ∈ ℜn×n, with A symmetric, and let ||.||2 be
the spectral matrix norm. If A has eigenvalues λ1,…, λn, then

(a) all the eigenvalues of A+B lie in the union of the discs

Di = {z:|z − λi| ≤ ||B||2}, i = 1, 2, . . . , n (5)

in the complex z-plane;
(b) a set of k disks having no point in common with the remain-

ing n—k discs contains exactly k eigenvalues of A+B.
Proof. This is the well-known Bauer–Fike localization theorem
specialized for the case when the unperturbed matrix A is real and
symmetric (see, for example [11], Lemma 1). ▪

Recall that ||B||2 is equal to the square root of the largest eigen-
value of the matrix BTB.
The following assertion provides us with an estimation of the

parameter ɛ in terms of the eigenvalues of K and the spectral
norm of P under which system (4) remains stable.

Result 1. Let λ1,…, λn be the distinct eigenvalues of the positive
definite potential matrix K. If

ε < η/||P||2 (6)

where

η =min λmin, min
1≤i≠j≤n

|λi − λj|/2
{ }

(7)

then the system (4) is stable. ▪

Proof. It follows from the part (a) of Lemma 2 that all the eigenval-
ues of K+ ɛP are contained in the union of the disks

Di = {z:|z − λi| ≤ ε||P||2}, i = 1, 2, . . . , n (8)

with the same radius ɛ||P||2 and centers at the points λi on the real
axis. The condition ɛ< λmin/||P||2 ensures that the union of disks
(8) is located in the open right half plane, i.e. that every eigenvalue
of K+ ɛP has positive real part. On the other hand, if
ε||P||2 < min

1≤i≠j≤n
|λi − λj|/2, then any disk (8) is disjoint from all

other disks, and, in view of the part (b) of Lemma 2, it contains
one and only one eigenvalue of K+ ɛP. In this case any eigenvalue
of the matrix K+ ɛP is real because the spectrum of a real matrix is
symmetrically placed with respect to the real axis. Thus, under con-
ditions (6) and (7), the matrix K+ ɛP has all simple positive eigen-
values and, according to Lemma 1, the system (4) is stable. ▪

Remark 1. When the perturbing matrix P is circulatory (PT=−P),
then (7) can be replaced by η=min 1≤i≠j≤n|λi− λj|/2, as shown in
Ref. [11]. ▪
Result 1 says that a stable potential system all of whose natural

frequencies are distinct remains stable after the addition of suffi-
ciently small positional forces of arbitrarily structure. In the next
section, we will consider the case of multiple frequencies of the
potential system.

3 Case of Multiple Natural Frequencies
In what follows, we will need the following two assertions.
LEMMA 3. Suppose that the positive definite potential matrix K

has one multiple eigenvalue λ0 and that its other eigenvalues are
simple. If all eigenvalues μj(ɛ) of the matrix K+ ɛP, such that
μj(0)= λ0, are real and simple or semi-simple as ɛ→ 0, then the
system remains stable for small enough ɛ; otherwise it will be
unstable by flutter for arbitrarily small nonzero ɛ.
Proof. This follows easily from Lemmas 1 and 2. ▪
LEMMA 4. Let A be a real k × k matrix and let H

(A)
= [hi+j−2]ki,j=1,

where

hi+j−2 = Tr(Ai+j−2), i, j = 1, 2, . . . , k (9)

Then, the matrix A has

(a) all real eigenvalues if and only if the matrix H
(A)

is positive
semi-definite;

(b) k distinct real eigenvalues if and only if H
(A)

is positive definite;
(c) at least one pair of complex conjugate eigenvalues if and

only if H
(A)

is indefinite.
Proof. Observe that

Tr(Aj) =
∑k
i=1

αji, j = 0, 1, 2, . . .

where αi are eigenvalues of A [17], i.e., H
(A)

is the Hankel matrix of
the Newton sums associated with the characteristic polynomial of A.
Then, in view of the Borhardt–Jacobi theorem [18, Section 13.10],

if {π, ν, δ} is the inertia of the matrix H
(A)

(i.e., the triplet of numbers

of positive, negative, and zero eigenvalues of H
(A)
) the matrix A has ν

different pairs of complex conjugate eigenvalues and π− ν different
real eigenvalues. From this the result easily follows. ▪

Remark 2. If A is 2 × 2 matrix with elements aij, then conditions (a),
(b), and (c) of Lemma 4 reduce to the well-known simple conditions
δ≥ 0, δ> 0, and δ< 0, respectively, where δ= (a11− a22)

2+ 4a12a21
is the discriminant of the characteristic equation of A.
In this section, we suppose that the potential matrix K has one

eigenvalue λ0 of multiplicity m≥ 2, and that the other eigenvalues
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are simple. Let T= [Tm|Tn−m] be an orthogonal matrix, where the n
×m submatrix Tm containsm eigenvectors of K corresponding to the
multiple eigenvalue, and the n× (n−m) submatrix Tn−m contains
the remainder of the eigenvectors of K. The orthogonal matrix T
reduces K and P to the forms

Λ̂ = TTKT = diag(λ0Im, Λn−m), P̂ = TTPT = P̂11 P̂12

P̂21 P̂22

[ ]

where Λn−m = TT
n−mKTn−m is the (n−m)-dimensional diagonal

matrix, and

P̂11 = TT
mPTm, P̂12 = TT

mPTn−m, P̂21 = TT
n−mPTm,

P̂22 = TT
n−mPTn−m (10)

Let μ(ɛ) be an eigenvalue of the matrix (Λ̂ + εP̂) for which μ(0)=
λ0 and let w(ɛ) be corresponding eigenvector, i.e.,

(Λ̂ + εP̂)w = μw (11)

According to a classical result related to the perturbation of a mul-
tiple semi-simple eigenvalue, there is a number a and a positive
integer r≤m such that μ(ɛ)= λ0+ aɛ+O(ɛ1+(1/r)) as ɛ→ 0 [18,
δ11.7] (see also the interesting paper [19], which discusses the
appearance of fractional powers in the expansions of perturbed
semi-simple eigenvalues). With this in mind, we substitute in μ=
λ0+ ɛβ and w = �wT εw̃T

[ ]T
in (11), where �w and w̃ are m and

(n−m) dimensional vectors, respectively, so that we get

(P̂11 − βIm)�w + εP̂12w̃ = 0 (12)

and

(Λn−m − λ0In−m)w̃ + P̂21�w + εP̂22w̃ − εβw̃ = 0 (13)

Also, we next write

β(ε) = β0 + β1ε
1/r + β2ε

2/r + · · · + βrε + · · · (14)

and

�w = �w0 + ε1/r �w1 + ε2/r �w2 + · · · ,
w̃ = w̃0 + ε1/rw̃1 + ε2/rw̃2 + · · · (15)

Substituting (14) and (15) into (12) and collecting coefficients of
equal powers of ɛ, we find

{ε0} (P̂11 − β0Im)�w0 = 0 (16)

{εk/r} (P̂11 − β0Im)�wk =

∑k
i=1

βi�wk−i, k = 1, . . . , r − 1

∑k
i=1

βi�wk−i − P̂12w̃k−r , k = r, r + 1, . . .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(17)

Also, in the same manner, from (13) we get

{ε0} w̃0 = −DP̂21�w0 (18)

{εk/r}

w̃j

=
−DP̂21�wj, j = 1, . . . , r − 1

−D P̂21�wj + P̂22w̃ j−r −
∑j−r
i=0

βiw̃ j−r−i

( )
, j = r, r + 1, . . .

⎧⎪⎨
⎪⎩

(19)

where

D = (Λn−m − λ0In−m)
−1 (20)

It follows from (16) that β0 is an eigenvalue of the m by m real
matrix P̂11 = TT

mPTm. If this matrix has all real distinct eigenvalues
β0i, i= 1,…,m, then when ɛ→ 0, the matrix Λ̂ + εP̂ (and, of course,
K+ ɛP too) has m real distinct eigenvalues of the forms

μi(ε) = λ0 + εβ0i + O(ε1+(1/r)), i = 1, . . . , m

and, according to Lemma 3, system (4) is stable for sufficiently
small ɛ. On the other hand, if the matrix P̂11 has at least one pair
of eigenvalues with nonzero imaginary part, then the matrix Λ̂ +
εP̂ has a pair of eigenvalues of the form

μ(ε) = λ0 + ε(α ± iν) + O(ε1+(1/r))

with ν> 0, and again in view of Lemma 3, system (4) is unstable by
flutter for arbitrarily small nonzero ɛ.
Recalling that the n by m matrix Tm is composed of the m ortho-

normal eigenvectors of K associated with the eigenvalue λ0 and
applying Lemma 4, we have proved the following result. ▪

Result 2. The addition of a general perturbation ɛP to the n degree
of freedom potential system described by Eq. (3) that has an eigen-
value λ0 of multiplicity m with 2≤m≤ n will cause:

(a) the system described by Eq. (4) to remain stable for suffi-

ciently small values of ɛ if the matrix H
(P̂11)

associated with
the m by m matrix P̂11 = TT

mPTm is positive definite;
(b) the system described by Eq. (4) becomes unstable by flutter

for arbitrarily small nonzero values of ɛ if H
(P̂11)

is indefinite.▪

COROLLARY 1. [16,20]. If the perturbation matrix is purely
circulatory (i.e., PT=−P) and P̂11 ≠ 0, then the system (4) is unsta-
ble by flutter for arbitrarily small nonzero values of ɛ.
Proof. Obviously, if PT=−P and P̂11 ≠ 0, then the matrix H

(P̂11)
is

indefinite because h2 = Tr(P̂2
11) < 0. ▪

Remark 3. The matrix P̂11 = TT
mPTm is, as we shall see, of pivotal

importance in ascertaining the stability/instability of the perturbed
multidegree of freedom system. The m orthonormal columns of
Tm are the eigenvectors of K corresponding to the multiple eigen-
value λ0 of multiplicity m, and they form a subspace. The matrix
P̂11 then represents the work done by the perturbational forces for
displacements in the subspace spanned by the columns of the
matrix Tm. Any displacement vector in this subspace can be repre-
sented by xm= Tmχ and the work done by the perturbation force,
Pxm, is then χT P̂11χ. ▪

Remark 4. If the matrix Tm can be partitioned such that Tm= [Tp|Tm
−p], 2≤ p≤m, TT

p P Tm−p Tn−m
[ ]

= 0, and the p× p matrix TT
p PTp

has at least one pair of complex conjugate eigenvalues with nonzero
imaginary parts, then the condition (b) of Result 2 is satisfied. More-
over, in this case instability follows for every ɛ, infinitesimal or
finite, as shown in Ref. [1]. ▪

The following example illustrates the applicability of Result 2.
Example 1. Consider system (4) with

K =

2 −1 0 −1
−1 2 0 1
0 0 1 0
−1 1 0 2

⎡
⎢⎢⎣

⎤
⎥⎥⎦ and

P =

8 a + b − 4 a − 2b + 4 −a − b − 3
a − b 2a + 2 −b − 4 −a − b − 2

a + 2b + 2 b − 2 3 − 2a a + b − 2
b − a − 1 b − a a − b − 4 2

⎡
⎢⎢⎣

⎤
⎥⎥⎦
(21)

where a and b are real numbers.
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The matrix K has the following eigenvalues and corresponding
mutually orthogonal eigenvectors:

t1 =
1��
3

√ [ 1 0 1 1]T , λ1,2,3 = λ0 = 1,

t2 =
1��
3

√ [ 1 1 −1 0]T , t3 =
1��
3

√ [ 0 1 1 −1]T ,

λ4 = 4, t4 =
1��
3

√ [ 1 −1 0 −1]T

For this system of eigenvectors, we have

P̂11 = t1 t2 t3
[ ]T

[P] t1 t2 t3
[ ]

= 3
1 b 0
−b 1 a
0 a 1

⎡
⎣

⎤
⎦ (22)

Now, it is easy to calculate that the matrix H
(P̂11)

associated with (22)
is as follows:

H
(P̂11)

=
h0 h1 h2
h1 h2 h3
h2 h3 h4

⎡
⎣

⎤
⎦

with h0= 3, h1= 9, h2= 9(3+ 2(a2− b2)), h3= 81(1+ 2(a2− b2)),
h4= 81(3+ 12(a2− b2)+ 2(a2− b2)2), and its leading principal
minors are: D1= 3, D2= 6(a2− b2) and D3= 108(a2− b2)3. From

this, in view of the Sylvester’s criterion, H
(P̂11)

>0 if a2− b2 > 0. Con-

versely, if a2− b2 < 0, H
(P̂11)

is indefinite, and in the case a2= b2 the

matrix H
(P̂11)

is positive semi-definite, since all its principal minors are
non-negative. Thus, according to Result 2, if |a| > |b| system (4),
(21) remains stable for sufficiently small ɛ, and if |a| < |b| the
system becomes unstable by flutter for arbitrarily nonzero ɛ. ▪

Result 2 leaves open the question of what happens when the

matrix H
(P̂11)

is positive semi-definite, i.e., when the matrix P̂11
with the real spectrum has a repeated eigenvalue.
Let pi, i= 1, …, m, be real eigenvalues of the m ×m matrix

P̂11 = TT
mPTm. Suppose, for convenience, that the eigenvalues pi

are ordered in such a way that p1= p2= · · ·= ps= p0, s≥ 2, and
that the other eigenvalues ps+1,…, pm are simple. Substituting
β0 = p0 into (16) and (17), taking into account (18) and (19), we
get the chain of equations for the unknowns β1, β2,… and �w0, �w1 . . .

(P̂11 − p0Im)�w0 = 0

(P̂11 − p0Im)�wk =
∑k
j=1

βj�wk−j, k = 1, . . . , r − 1

(P̂11 − p0Im)�wr + R�w0 =
∑r
j=1

βj�wr−j

(23)

(P̂11 − p0Im)�wr+k + R�wk =
∑r+k
j=1

βj�wr+k−j, k = 1, . . . , r − 1

(P̂11 − p0Im)�w2r + R�wr + Q�w0 =
∑2r
j=1

βj�w2r−j

..

.

with R = −P̂12DP̂21, Q = P̂12D(P̂22 − p0In−m)DP̂21

(24)

In what follows, we consider two important cases when p0 is
either nonderogatory or semi-simple eigenvalue of P̂11. The case
of a multiple eigenvalue with an arbitrary Jordan structure is possi-
ble, but it is usually very rare in real-world settings [5] and it is not
considered here.

(i) Nonderogatory eigenvalue p0

Suppose that the eigenvalue p0 of P̂11 with algebraic multiplicity
s≥ 2 is nonderogatory, i.e., it has geometric multiplicity 1. The
Jordan chains consisting of the right and left eigenvectors �w0 and
�v0, and associated vectors u1,…, us−1 and v1,…, vs−1 satisfy the
equations

(P̂11 − p0Im)�w0 = 0,
(P̂11 − p0Im)u1 = �w0,

..

.

(P̂11 − p0Im)us−1 = us−2,

(P̂T
11 − p0Im)�v0 = 0

(P̂T
11 − p0Im)v1 = �v0

..

.

(P̂T
11 − p0Im)vs−1 = vs−2

(25)

and the normalization conditions

�vT0us−1 = 1, vT1us−1 = · · · = vTs−1us−1 = 0 (26)

Substituting r= s into (23) and proceeding similarly to [5,
Section 2.7], from the first (s+ 1) equations of (23), taking into
account (25) and (26), and assuming that

vTs−1�w0 = 1, vTs−1�w = 1 (27)

we find

βs1 = c, c = �vT0R�w0 (28)

If c≠ 0, then β1 =
��
cs

√
has s different nonzero values, and between

them, when s> 2, there is at least one complex conjugate pair with
nonzero imaginary part. Consequently, in this case the matrix Λ̂ +
εP̂ has at least one complex conjugate pair of eigenvalues of the
form

μ(ε) = λ0 + εp0 + ε1+(1/s)(δ ± iν) + o(ε1+(1/s)), δ ∈ ℜ, ν > 0

(29)

If s= 2 in (28) and c< 0, we have

μ(ε) = λ0 + εp0 ± i
���
|c|

√
ε1+(1/2) + o(ε1+(1/2)) (30)

while the case c> 0 produces two different real eigenvalues

μ(ε) = λ0 + εp0 ±
��
c

√
ε1+(1/2) + o(ε1+(1/2)) (31)

Note that to check the condition c≠ 0 we can use any right and left
eigenvector corresponding to the eigenvalue p0, not just normalized
ones. This, taking into account Lemma 3, leads to our next result.

Result 3. Suppose that the m by m matrix P̂11 has a real eigenvalue
p0 of algebraic multiplicity s≥ 2 and geometric multiplicity 1, and
the rest of the eigenvalues are real and distinct.

(a) If s > 2 and �vT0R�w0 ≠ 0, where the m by m matrix R is given
in Eq. (24) and �w0 (�v0) is a right (left) eigenvector of P̂11 cor-
responding to p0, then system (4) becomes unstable by flutter
for arbitrarily small nonzero values of ɛ.

(b) Let s= 2 and let �w0, u1 (�v0, v1) be the right (left) Jordan chain
corresponding to p0 normalized as vT1 �w0 = �vT0u1 = 1, then
(b-1) If �vT0R�w0 < 0, the system becomes unstable by flutter

for arbitrarily small nonzero values of ɛ;
(b-2) If �vT0R�w0 > 0, the system remains stable for sufficiently

small values of ɛ. ▪

Example 2. Consider Example 1 when |b|= |a|≠ 0.
We first consider the case when b= a≠ 0. For this case the matrix

(22) becomes

P̂11 = 3
1 a 0
−a 1 a
0 a 1

⎡
⎣

⎤
⎦ (32)

which has the triple nonderogatory eigenvalue p0= 3 with right and
left eigenvectors �w0 = [ 1 0 1 ]T and �v0 = [ 1 0 −1 ]T , respec-
tively. On the other hand, we find that
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D = 1
3 I1, P̂12 = [ t1 t2 t3 ]T [P][t4] = 3[ 2 1 1 ]T ,

P̂21 = [t4]T [P][ t1 t2 t3 ] = 3[ 2 −1 1 ], and

R = −P̂12DP̂21 = −3
4 −2 2
2 −1 1
2 −1 1

⎡
⎣

⎤
⎦

so that �vT0R�w0 = −9 ≠ 0. Observe that P̂11(a, b = −a) = [P̂11(a, b =
a)]T and, consequently, the vectors �v0 = [ 1 0 −1 ]T and �w0 =
[ 1 0 1 ]T are the right and left eigenvectors of the matrix
P̂11(a, b = −a), and we find again that �wT

0R�v0 = −9 ≠ 0. Hence,
according to Result 3-a, if |b|= |a|≠ 0, then system (4), (21) is unsta-
ble by flutter for arbitrarily small nonzero values of ɛ. ▪

Example 3. Let

Λ̂ =
1 0 0
0 1 0
0 0 2

⎡
⎣

⎤
⎦ and P̂ =

1 1 1
0 1 1
−1 0 2

⎡
⎣

⎤
⎦ (33)

For this example n= 3, λ0= 1 and m= 2. The matrix

P̂11 =
1 1
0 1

[ ]

has the double nonderogatory eigenvalue p0= 1 with corresponding
right and left Jordan chains

�w0 =
1
0

[ ]
, u1 =

0
1

[ ]
, and �v0 =

0
1

[ ]
, v1 =

1
0

[ ]

which satisfy the normalization conditions �vT0u1 = vT1 �w0 = 1. More-
over, D= I1, P̂12 = [ 1 1 ]T , P̂21 = −1 0

[ ]
and

R =
1 0
1 0

[ ]

so that �vT0R�w0 = 1 > 0. Thus, in view of Result 3-b-2, system (4),
(33) is stable for sufficiently small values of ɛ. ▪

(ii) Semi-simple eigenvalue p0

Suppose that the eigenvalue p0 of P̂11 with algebraic multiplicity
s≥ 2 is semi-simple, i.e., its geometric multiplicity is also s. Define

m by m matrices

U = [Us Um−s] , V = [Vs Vm−s]

whose columns are the m right and left eigenvectors of P̂11, respec-
tively, determined so that VTU= Im and

VTP̂11U = VT
s P̂11Us VT

s P̂11Um−s
VT
m−sP̂11Us VT

m−sP̂11Um−s

[ ]
=

p0Is 0
0 �Λm−s

[ ]

where �Λm−s = diag(ps+1, . . . , pm). Setting �wj = U[ ��wT
j �̃w

T
j ]

T ,

where ��wj and �̃wj are s and (m− s) dimensional vectors, respectively,
in Eq. (23) and premultiplying these by VT from the left, from the
first r vector Eq. (23) we obtain

�̃w0 = �̃w1 = · · · = �̃wr−1 = 0 (34)

and

β1 = β2 = · · · = βr−1 = 0 (35)

Taking into account (34) and (35), the (r+ 1)th equation of (23)
becomes

0 0
0 �Λm−s − p0Im−s

[ ]
��wr

�̃wr

[ ]
+ R̂11 R̂12

R̂21 R̂22

[ ]
��w0

0

[ ]
= βr

��w0

0

[ ]
(36)

where

R̂11 = VT
s RUs, R̂12 = VT

s RUm−s, R̂21 = VT
m−sRUs,

R̂22 = VT
m−sRUm−s (37)

while the next r equations, again taking into account (34) and (35),
have the forms

0 0

0 �Λm−s − p0Im−s

[ ]
��wr+k

�̃wr+k

[ ]
+

R̂11 R̂12

R̂21 R̂22

[ ]
��wk

0

[ ]

=
∑k
j=0

βr+j
��wk−j

0

[ ]
, k = 1, . . . , r − 1

(38)

and

0 0

0 �Λm−s − p0Im−s

[ ]
��w2r

�̃w2r

[ ]
+

R̂11 − βrIs R̂12

R̂21 R̂22 − βrIm−s

[ ]
��wr

�̃wr

[ ]
+

Q̂11 Q̂12

Q̂21 Q̂22

[ ]
��w0

0

[ ]
=
∑r
j=1

βr+j
��wr−j

0

[ ]
(39)

with

Q̂11 = VT
s QUs, Q̂12 = VT

s QUm−s, Q̂21 = VT
m−sQUs,

Q̂22 = VT
m−sQUm−s (40)

It follows from (36) that

(R̂11 − βrIs)��w0 = 0, �̃wr = −�DR̂21��w0 (41)

where

�D = (�Λm−s − p0Im−s)
−1 (42)

and, consequently, βr is an eigenvalue of the s by s matrix
R̂11 = VT

s RUs. If this matrix has all real distinct eigenvalues ρi, i=
1, …, s, then when ɛ→ 0, the matrix Λ̂ + εP̂ (and, of course, K+
ɛP) has m real distinct eigenvalues of the forms

μi(ε) = λ0 + εp0 + ε2ρi + o(ε2), i = 1, . . . , s (43)

and

μi(ε) = λ0 + εpi + o(ε), i = s + 1, . . . , m (44)

If the matrix R̂11 has at least one pair of eigenvalues of the form δ±
iν, with ν> 0, then the matrix Λ̂ + εP̂ has at least one complex con-
jugate pair of eigenvalues of the form

μ(ε) = λ0 + p0ε + (δ ± iν)ε2 + o(ε2) (45)

Thus, according to Lemmas 3 and 4, we get the following result.

Result 4. Suppose that the m by m matrix P̂11 has a real eigenvalue
p0 of algebraic multiplicity s≥ 2 and geometric multiplicity s, the
rest of the eigenvalues being real and distinct. Consider the
matrix R̂11 = VT

s RUs given in Eq. (37) in which the columns of
the m by s matrix Us (Vs) are right (left) eigenvectors of P̂11 corre-
sponding to the multiple eigenvalue p0. Then
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(a) the system described by Eq. (4) remains stable for suffi-

ciently small values of ɛ if the matrix H
(R̂11)

associated with
R̂11 = VT

s RUs is positive definite;
(b) the system described by Eq. (4) becomes unstable by flutter

for arbitrarily small nonzero values of ɛ if the matrix H
(R̂11)

associated with R̂11 = VT
s RUs is indefinite. ▪

COROLLARY 2. [16]. If PT=−P and P̂11 = 0, then the system (4)
remains stable for sufficiently small values of ɛ when all eigenval-
ues of the symmetric matrix R = P̂12DP̂T

12 are distinct.
Proof. Clearly, in this case p0= 0 is an m-fold semi-simple eigen-
value of P̂11, P̂21 = −P̂T

12, and consequently R̂11 = R = P̂12DP̂T
12. ▪

Example 4. Let

Λ̂ = diag(1, 1, 1, 1, 2, 3) and

P̂ =

1 0 0 0 3 2
0 1 0 0 0 2
0 0 1 0 1 2
0 0 0 2 0 1
0 −4 0 1 0 −3
2 2 1 −1 3 2

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(46)

For this example n= 6, λ0= 1, m= 4, P̂11 = diag(1, 1, 1, 2), i.e.,
p0= 1, s= 3, and

P̂T
12 =

3 0 1 0
2 2 2 1

[ ]
, P̂21 =

0 −4 0 1
2 2 1 −1

[ ]

Now, taking into account that D = diag(1, 1/2), we have

R = −P̂12DP̂21 = −
1
2

4 −20 2 4
4 4 2 −2
4 −4 2 0
2 2 1 −1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

from which follows

R̂11 = −
2 −10 1
2 2 1
2 −2 1

⎡
⎣

⎤
⎦

The Hankel matrix H
(R̂11)

associated with R̂11 is indefinite because its
diagonal element h2 = Tr(R̂2

11) = −31 is negative, and, in view of
Result 4-b, instability of system (4), (46) follows for arbitrarily
small nonzero values of ɛ. ▪

We next consider the case when the s by s matrix R̂11 has a real
eigenvalue ρ0 of algebraic multiplicity l (ρ1= · · ·= ρl= ρ0) that is
either nonderogatory or semi-simple, with its other eigenvalues
ρl+1,…, ρs being real and distinct.
Putting βr= ρ0 in Eqs. (36), (38), and (39), and assuming that the

integer r≤ l, we find the following equations with the unknowns
βr+1, βr+2,… and ��w0, ��w1 . . .

(R̂11 − ρ0Is)��w0 = 0 (47)

(R̂11 − ρ0Is)��wk =
∑k
j=1

βr+j��wk−j, k = 1, . . . , r–1 (48)

and, taking into account the second equation of (41),

(R̂11 − ρ0Is)��wr + L��w0 =
∑r
j=1

βr+j��wr−j (49)

where the s× s matrix L is determined as

L = Q̂11 − R̂12 �DR̂21 (50)

▪

The matrices R̂12, R̂21, Q̂11, and �D are given in Eqs. (37), (40), and
(42).

(ii-1) Nonderogatory eigenvalue ρ0

Let ��w0 and ��v0 be right and left eigenvectors corresponding to the
l-fold nonderogatory eigenvalue ρ0 of the matrix R̂11. Substituting
r = l into (48) and (49), and working through in the same manner
as in subsection (i), for the case l > 2 when ��vT0L��w0 ≠ 0, we obtain
that the matrix Λ̂ + εP̂ has at least one complex conjugate pair of
eigenvalues of the form

μ(ε) = λ0 + εp0 + ε2ρ0 + ε2+(1/l)(δ ± iν) + o(ε2+(1/l)),

δ ∈ ℜ, ν > 0 (51)

On the other hand, in the case l= 2 assuming that the right and left
Jordan chains (��w0, u1) and (��v0, v1) corresponding to ρ0 satisfy the
normalization conditions vT1 ��w0 = ��vT0u1 = 1, we see that if
c1 = ��vT0L��w0 < 0, then the matrix Λ̂ + εP̂ has one complex conjugate
pair of eigenvalues of the form

μ(ε) = λ0 + εp0 + ε2ρ0 ± i
����
|c1|

√
ε2+(1/2) + o(ε2+(1/2)) (52)

while if c1 > 0, then

μ(ε) = λ0 + εp0 + ε2ρ0 ±
���
c1

√
ε2+(1/2) + o(ε2+(1/2)) (53)

This leads to the following result.

Result 5. Suppose that the s by s matrix R̂11 has a real eigenvalue
ρ0 of algebraic multiplicity l≥ 2 and geometric multiplicity 1, the
rest of the eigenvalues being real and distinct.

(a) If l > 2 and ��vT0L��w0 ≠ 0, where the matrix L is given in
Eq. (50), and ��w0 (��v0) is a right (left) eigenvector of R̂11 cor-
responding to ρ0, then system (4) becomes unstable by flutter
for arbitrarily small nonzero values of ɛ.

(b) If l= 2 and ��w0, u1 (��v0, v1) be the right (left) Jordan chain cor-
responding to ρ0 normalized as vT1 ��w0 = ��vT0u1 = 1, then
(b-1) if ��vT0L��w0 < 0, the system becomes unstable by flutter for

arbitrarily small nonzero values of ɛ, and
(b-2) if ��vT0L��w0 > 0, the system remains stable for sufficiently

small values of ɛ.

(ii-2) Semi-simple eigenvalue ρ0

Let ρ0 be a semi-simple real eigenvalue of multiplicity l≥ 2 of the
s by s matrix R̂11 and let its other eigenvalues be real and simple.
Define s by s matrices

Ũ = [ Ũl Ũs−l] , Ṽ = [ Ṽ l Ṽ s−l]

whose columns are the s right and left eigenvectors of R̂11 respec-

tively, such that Ṽ
T
Ũ = Is and

Ṽ
T
R̂11Ũ =

Ṽ
T
l R̂11Ũl Ṽ

T
l R̂11Ũs−l

Ṽ
T
s−lR̂11Ũl Ṽ

T
s−lR̂11Ũs−l

[ ]
=

ρ0Il 0

0 ��Λs−l

[ ]

where ��Λs−l = diag(ρl+1, . . . , ρs). Setting ��wj = Ũ[ ���w
T
j

�̃�w
T

j
]T , where

���wj and �̃�wj are l and (s− l) dimensional vectors, respectively, in

Eqs. (47), (48) and (49), and premultiplyng these by Ṽ
T
from the

left, from (47) and (48) we see that

�̃�w0 = �̃�w1 = · · · = �̃�wr−1 = 0 (54)

and

βr+1 = βr+2 = · · · = β2r−1 = 0 (55)
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while Eq. (49), taking into account (54) and (55), gives

(L̂11 − β2rIl)
���w0 = 0, �̃�wr = −��DL̂21���w0 (56)

where

L̂11 = Ṽ
T
l LŨl, L̂21 = Ṽ

T
s−lLŨl, ��D = (��Λs−l − ρ0Is−l)

−1 (57)

It follows from the first equation of (56) that β2r is an eigenvalue of

the l by l matrix L̂11 = Ṽ
T
l LŨl. If this matrix has all real distinct

eigenvalues σi, i= 1, …, l, then when ɛ→ 0, the matrix Λ̂ + εP̂
has m real distinct eigenvalues of the forms

μi(ε) = λ0 + εp0 + ε2ρ0 + ε3σi + o(ε3), i = 1, . . . , l

μi(ε) = λ0 + εp0 + ε2ρi + o(ε2), i = l + 1, . . . , s

μi(ε) = λ0 + εpi + o(ε), i = s + 1, . . . , m

If the matrix L̂11 has at least one pair of eigenvalues of the form δ ±
iν, with ν> 0, then the matrix Λ̂ + εP̂ has at least one complex con-
jugate pair of eigenvalues of the form

μ(ε) = λ0 + p0ε + ρ0ε
2 + (δ ± iν)ε3 + o(ε3)

Thus, according to Lemmas 3 and 4, we have the following result.▪

Result 6. Suppose that the s by s matrix R̂11 has a real semi-simple
eigenvalue ρ0 of multiplicity l≥ 2, the rest of the eigenvalues being
real and distinct. Consider the l by l matrix L̂11 = Ṽ

T
l LŨl given in

Eq. (57) in which the columns of the s by l matrix Ũl(Ṽ l) are
right (left) eigenvectors of R̂11 corresponding to the multiple eigen-
value ρ0. Then,

(a) the system described by Eq. (4) remains stable for suffi-

ciently small values of ɛ if the matrix H
(L̂11)

associated with
L̂11 is positive definite;

(b) the system described by Eq. (4) becomes unstable by flutter

for arbitrarily small nonzero values of ɛ if the matrix H
(L̂11)

associated with L̂11 is indefinite. ▪

COROLLARY 3. [16]. Suppose that PT=−P and P̂11 = 0. If the
symmetric m×m matrix R = P̂12DP̂T

12 has an eigenvalue ρ0 of mul-
tiplicity l≥ 2 and T̃

T
l P̂12DP̂22DP̂T

12T̃ l ≠ 0, where the columns of the
m×l matrix T̃ l are orthonormal eigenvectors of R corresponding to
the multiple eigenvalue ρ0, then system (4) becomes unstable by
flutter for arbitrarily small nonzero values of ɛ.
Proof. Obviously, in this case R̂11 = R and
L̂11 = −T̃T

l P̂12DP̂22DP̂T
12T̃ l. Then instability follows from Result

6-b because L̂11 is an l by l nonzero skew-symmetric matrix. ▪

If the matrix L̂11 has a real eigenvalue of multiplicity g≥ 2 and
the other eigenvalues are real and simple, the procedure can be con-
tinued in the same manner as above. Particularly, we state the fol-
lowing two results without proof.

Result 7. Consider the matrices P̂12, P̂21, and D given in Eqs. (10)
and (20), and suppose that the m by m matrices P̂11 and
R = −P̂12DP̂21, have real semi-simple eigenvalues p0 and ρ0 of mul-
tiplicity m≥ 2 and l≥ 2, respectively, with the rest of the eigenval-
ues of R, ρl+1,…, ρm, being real and distinct. Let Ũ = [ Ũl Ũm−l] ,
Ṽ = [ Ṽ l Ṽm−l] be the matrices of right and left eigenvectors of R,
respectively, such that Ṽ

T
Ũ = Im and

Ṽ
T
RŨ =

ρ0Il 0

0 ��Λm−l

[ ]

where ��Λm−l = diag(ρl+1 . . . ., ρm). Define the m ×m matrices

Q = P̂12D(P̂22 − p0In−m)DP̂21,

B = P̂12[D(P̂22 − p0In−m)]
2DP̂21 + ρ0P̂12D

2P̂21 (58)

where P̂22 is determined in Eq. (10), as well as the l by l matrices

Q̂11 = Ṽ
T
l QŨl, Ω = Q̂12

��DQ̂21 + B̂11 (59)

with

Q̂12 = Ṽ
T
l QŨm−l, Q̂21 = Ṽ

T
m−lQŨl, ��D = (��Λm−l − ρ0Im−l)

−1,

B̂11 = Ṽ
T
l BŨl (60)

(a) Suppose that the matrix Q̂11 has a real eigenvalue q0 of alge-
braic multiplicity g≥ 2 and geometric multiplicity 1, and its
other eigenvalues are real and distinct. Then
(a-1) If g> 2 and ηT0Ωξ0 ≠ 0, where ξ0 (η0) is a right (left)

eigenvector of Q̂11 corresponding to q0, then system
(4) becomes unstable by flutter for arbitrarily small
nonzero values of ɛ.

(a-2) If g= 2 and ξ0, ξ1 (η0, η1) be the right (left) Jordan chain
corresponding to q0 normalized as ηT1 ξ0 = ηT0 ξ1 = 1, then

(a-2–1) if ηT0Ωξ0 > 0, the system becomes unstable by flutter
for arbitrarily small nonzero values of ɛ, and

(a-2-2) if ηT0Ωξ0 < 0, the system remains stable for suffi-
ciently small values of ɛ.

(b) Suppose that the matrix Q̂11 has a real semi-simple eigen-
value q0 of multiplicity g≥ 2, and its other eigenvalues are
real and distinct. Then,
(b-1) the system described by Eq. (4) remains stable for suf-

ficiently small values of ɛ if the matrix H
(Ω̂11)

associated

with the g× g matrix Ω̂11 =
˜̃V
T

gΩ
˜̃Ug, where the

columns of the l by g matrix ˜̃Ug ( ˜̃Vg) are right (left)
eigenvectors of Q̂11 corresponding to the multiple eigen-
value q0, is positive definite;

(b-2) the system described by Eq. (4) becomes unstable by

flutter for arbitrarily small nonzero values of ɛ if H
(Ω̂11)

is
indefinite. ▪

Result 8. If m= n− 1 and the matrix P̂11 has the real semi-simple
eigenvalue p0 of multiplicity m, then system (4) remains stable
for sufficiently small values of ɛ. ▪

Remark 5. In the case when P=−PT, the Results 7 and 8 reduce to
Result 2.11 and Corollary 2.16 of [16], respectively.
Let us go back to Example 1 and consider the unsolved case

when a= b= 0. In this case matrix (22) becomes P̂11 = 3I3, and
according to Result 8, the system of this example remains stable
for sufficiently small ɛ. Indeed, it is easy to confirm that in this
case the matrix

Λ̂ + εP̂ =

1 + 3ε 0 0 6ε
0 1 + 3ε 0 3ε
0 0 1 + 3ε 3ε
3ε −3ε 3ε 4 + 6ε

⎡
⎢⎢⎣

⎤
⎥⎥⎦

has eigenvalues

μ1 = μ2 = 1 + 3ε, μ3,4 = (5 + 9ε ± 3
��������������
1 + 2ε + 9ε2

√
)/2

which all are real and positive for ɛ< 16/9. On the other hand, the
double eigenvalue (1+ 3ɛ) is semi-simple, since it has the following

two linearly independent eigenvectors 1 1 0 0
[ ]T

and

0 1 1 0
[ ]T

, and, consequently, the system is stable. ▪
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Example 5. Let

Λ̂ = diag(1, 1, 2, 3) and P̂ =

1 0 2 a
0 1 0 1
1 −a 0 1
0 4 b 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (61)

where a and b are real numbers.
For this example P̂11 = diag(1, 1) and

P̂12 =
2 a
0 1

[ ]
, P̂21 =

1 −a
0 4

[ ]
, P̂22 =

0 1
b 0

[ ]
,

D = diag(1, 1/2)
(62)

Obviously, p0= 1 is a double semi-simple eigenvalue of the 2 by 2
matrix P̂11 and, consequently, R̂11 = R = −P̂12DP̂21 = −2I2, which
has only one double semi-simple eigenvalue ρ0=−2. Now, it is
clear that L̂11 = L = Q̂11 = Q = P̂12D(P̂22 − p0I2)DP̂21 so, taking
into account (59), we obtain

L̂11 =
1
2

ab − 4 8 + 2a − a2b
b −2 − ab

[ ]

The discriminant of the characteristic equation of the above matrix
is δ= 4(1+ 8b), and, according to Result 6 (see also Remark 2), we
conclude that: (1) if b>−1/8, then system (4), (61) remains stable
for sufficiently small ɛ, and (2) if b<−1/8, then system (4), (61)
becomes unstable by flutter for arbitrarily small nonzero values of
ɛ. When b=−1/8, the matrix L̂11 becomes

L̂11 = Q̂11 = Q =
1
16

−a − 32 (a + 8)2

−1 a − 16

[ ]

and it has the double nonderogatory eigenvalue q0=−3/2 with cor-
responding right and left Jordan chains

ξ0 =
a + 8
1

[ ]
, ξ1 =

−1
0

[ ]
and η0 =

−1
a + 8

[ ]
, η1 =

0
1

[ ]

which satisfy the normalization conditions ηT1 ξ0 = ηT0 ξ1 = 1. More-
over, the matrix Ω defined in Eq. (59) for this case has the form

Ω =
1
32

188 + 3a −192 − 112a − 3a2

3 76 − 3a

[ ]

and ηT0Ωξ0 = −16 < 0. Hence, according to Result 7-a-2-2, in the
case b=−1/8 system (4), (61) remains stable for sufficiently
small ɛ. ▪

4 Application to an Engineering Problem
While the theory developed here is quite broad and can be

applied to numerous areas of application in civil, aerospace, and
mechanical engineering, in this section we present a simple four

degree-of-freedom linear system shown schematically in Fig. 1.
The directions of the coordinates describing the motion of the
two equal masses m are as shown. The stiffness of the linear
springs in the x-direction is k1 and the stiffness of the linear
springs in the y-direction is k2. The belts on the left, right, and
bottom, move on rollers and have a constant velocity, v. The coef-
ficient of dry friction between each of the belts and the snubbers that
rub against them is assumed to be ɛ.
Denoting the four-vector w:= [x1, x2, y1, y2]

T, the equation of
motion of the system can be written as

ẅ + Kw + εPw = 0 (63)

where

K =

2a − a 0 0

−a 2a 0 0

0 0 b 0

0 0 0 b

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ and P =

0 0 −b 0

0 0 0 −b
a 0 0 0

0 −a 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦
(64)

and a= k1/m and b= k2/m. We shall assume that the ratio b/a= k2/k1
is neither 1 nor 3.
The four eigenvalues of K are λ1,2= b, λ3= a, and λ4= 3a. We

thus see that b is a multiple eigenvalue of K, and the other eigenval-
ues are distinct and, by assumption, different from b. The unper-
turbed system (ɛ= 0) is stable because a, b> 0.
In the presence of the perturbing matrix ɛP (see Eq. (63)), the

multiple eigenvalue b of K splits. We now proceed to find out the
manner in which this happens, and whether this splitting would
lead to an instability. One can intuit that the changes in the eigen-
values caused by the perturbing matrix could leave the perturbed
system still stable, or possibly make it unstable.
The orthogonal matrix containing the eigenvectors correspond-

ing to the eigenvalues of K is

T =

0 0
1��
2

√ 1��
2

√

0 0
1��
2

√ −
1��
2

√
1 0 0 0
0 1 0 0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

thereby making

Λ̂ = TTKT = diag(b, b, a, 3a) and

P̂ = TTPT = P̂11 P̂12

P̂21 P̂22

[ ] (65)

where

P̂11 = P̂22 = 0, P̂12 =
1��
2

√ a a
−a a

[ ]
, and

P̂21 = −
1��
2

√ b b
b −b

[ ] (66)

From Eq. (20), we obtain D= diag((a− b)−1, (3a− b)−1). Setting w
=Tu, Eq. (63) can now be rewritten as

ü + (Λ̂ + εP̂)u = 0 (67)

The eigenvalues of P̂11 are semi-simple, and we can directly apply
Result 4 to this dynamical system. As required by this result, we
therefore first evaluate

R̂11 = R = −P̂12DP̂21

=
ab

(b − a)(b − 3a)
(2a − b) a

−a −(2a − b)

[ ]
(68)Fig. 1 A four degree-of-freedom system. The coefficient of fric-

tion between the belts and the snubbers is ɛ.
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and then evaluate the matrix H
(R̂11)

associated with R̂11. Noting that
h0: = Tr(R̂0

11) = 2, h1: = Tr(R̂11) = 0, and h2: = Tr(R̂2
11) = 2a2b2/

(b − a)(b − 3a), we obtain

H
(R̂11)

=
h0 h1
h1 h2

[ ]
=

2 0

0
2a2b2

(b − a)(b − 3a)

⎡
⎣

⎤
⎦ (69)

Thus, using Result 4, the system described by Eq. (63) is stable for
small enough values of the coefficient of friction ɛ when (b− a)(b
− 3a) > 0. We note that (i) the left-hand side of this inequality can
be written as a quadratic in b/a whose zeros are at 1 and 3 and (ii)
b/a= k2/k1. Hence, the condition for stability of the perturbed
system, for sufficiently small values of ɛ, is k2/k1 > 3, or 0 < k2/k1 <
1. The ratio k2/k1 then serves as our bifurcation parameter.
Furthermore, Result 4 states that the system described by Eq. (63)

is guaranteed to be unstable by flutter for arbitrarily small nonzero
values of ɛ when (b− a)(b− 3a) < 0, and this occurs when 1 < k2/k1
< 3. Using the analytical results provided, we have thus obtained the
conditions on k2/k1 that guarantee either stability or flutter instabil-
ity of the perturbed system described by Eq. (63).
The above result regarding instability states, for example, that

when b/a= k2/k1= 2, the system is guaranteed to be unstable by
flutter for arbitrarily small values of the coefficient of friction ɛ.
That is, the matrix (see Eq. (67))

Λ̂ + εP̂|b=2a =

2a 0 0 0

0 2a 0 0

0 0 a 0

0 0 0 3a

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ +

ε��
2

√

0 0 a −a
0 0 −a a

−2a −2a 0 0

−2a 2a 0 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

(70)

has a pair of complex eigenvalues.
In fact, from Eq. (68) we see that when b= 2a, that is, k2/k1= 2,

R̂11 =
0 −2a
2a 0

[ ]

The eigenvalues of this matrix are ±2ai. In the presence of the
perturbation matrix εP̂, the multiple eigenvalue b(= 2a) of K̂
splits. Equation (45) provides an explicit estimate of the complex
pair of eigenvalues of the matrix into which this multiple eigenvalue
splits as

μ(ε) = 2a + 0ε ± 2aiε2 + o(ε2) = 2
k1
m

± 2
k1
m
iε2 + o(ε2) (71)

Taking ε =
��
2

√
× 10−2, and k1/m= 1 for illustration, Eq. (71)

yields μ1,2(ɛ)≈ 2± 4 × 10−4i. Indeed, the determination of the
eigenvalues of the matrix in (70) for these values of a and ɛ
(using Maple) yields the complex pair 2± 3.99999968× 10−4i,
demonstrating the power of the analytical results obtained.
In a similar manner when b= (1/2)a, that is, k2/k1= 1/2, Result 4

shows that the system remains stable. In this case,

R̂11 =
a

5
3 2
−2 −3

[ ]

and the eigenvalues of this matrix are ±
��
5

√
a/5. Equation (43) then

gives an explicit estimate of the split in the multiple eigenvalue b=
a/2= k1/2m of Λ̂ that is caused by the additional perturbation
εP̂|b=(1/2)a as

μ(ε) =
1
2
k1
m

±

��
5

√

5
k1
m
ε2 + o(ε2) (72)

Again taking ε =
��
2

√
× 10−2, and k1/m= 1 for illustration,

Eq. (72) yields μ1(ɛ)≈ 0.5000894427 and μ2(ɛ)≈ 0.4999105572.
The corresponding answers obtained for the eigenvalues of the
matrix Λ̂ + εP̂|b=(1/2)a (using Maple) are 0.5000894523 and

0.4999105669, showing the quality of the approximation given
by Eq. (72).

5 Conclusions
The stability of dynamical systems is at the crossroads of interest

to engineers, physicists, and mathematician. Engineers are inter-
ested in generating safe and stable designs for structures, machines,
and mechanisms; physicists are concerned with the stability of
natural phenomena such as ocean currents and atmospheric flows,
and mathematicians aim at providing detailed mathematical condi-
tions when stability or instability ensues in the models generated by
physicists and engineers. Because of its practical applications, the
study of stability of linear systems to infinitesimal perturbing
forces has been a topic of interest for at least the last 150 years.
These investigations have mainly concentrated on seeing the

effect of narrow classes of perturbing forces, such as positional cir-
culatory forces, positional conservative/nonconservative forces, or
combinations of these, on the stability of stable potential systems
with a small number of degrees of freedom (usually 2–4). These
narrow classes of perturbing forces are often used by scientists/engi-
neers, in part, out of convenience and/or serendipity so that tractable
analytical results can be obtained.
This paper deals with the stability of a general stable potential

multidegree of freedom linear system subjected to arbitrary infini-
tesimal positional perturbation forces. Such general perturbing
forces arise commonly in both naturally occurring as well as in
engineered systems deployed by aerospace, civil, and mechanical
engineers. As seen, the stability results pertinent to general arbitrary
perturbations obtained here are considerably more complex, but
they have the advantage of being applicable to real-life situations,
since Nature does not necessarily limit itself to perturbing forces
that belong to our man-made, narrow categorizations, which are
often made up to meet mathematical convenience. Throughout
the paper the manner in which the results obtained for general per-
turbing forces include the results for restricted (narrower) classes of
forces, like circulatory forces, is discussed. To the best of the
authors’ knowledge, the results obtained in this paper are new
and have not appeared in the literature to date.
For potential systems that have positive definite stiffness matrices

whose eigenvalues are all distinct it is shown that for sufficiently
‘small’ general perturbation matrices (whose ‘size’ is precisely
quantified) the perturbed system remains stable (Result 1).
When dealing with positive definite MDOF potential systems

that have one eigenvalue of multiplicity greater than 1 (with the
other eigenvalues being simple) the Hankel matrix of Newton
sums associated with various matrices is shown to be very useful
in studying stability. Sufficient conditions for stability and flutter
instability are obtained that expose the interaction between the
eigenstructure of the potential matrix, the eigenspace that pertains
to the multiple eigenvalue, and to the general perturbation matrix.
It is shown that the subspace spanned by the orthonormal eigen-

vectors that correspond to the multiple eigenvalue is of primary
importance, and the matrix P̂11 that represents the work done by
the perturbation force in this subspace of displacements plays a
pivotal role in the assessment of the stability of the system.
Result 2 shows that if the Hankel matrix associated with P̂11 is pos-
itive definite (indefinite), then the potential system remains stable
(becomes flutter unstable) under infinitesimal perturbing forces.
When P̂11 has a real spectrum with repeated eigenvalues (and the
Hankel matrix is positive semi-definite) the detailed considerations
carried out show that the question of stability becomes very subtle,
and a rather complex stability picture emerges. Results 3–8 in Sec. 3
also consider situations when the multiple eigenvalue of P̂11 is
either semi-simple or nonderogatory. Several numerical examples
are provided throughout this section.
The power of the analytical results obtained in ascertaining stabi-

lity/instability of perturbed dynamical systems is illustrated by an
application to an engineering problem. Use of the analytical
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results delineate the manner in which multiple eigenvalues of the
potential system split in the presence of perturbative forces to
engender flutter instability or stability. This yields, in a straight
forward manner, the proper bifurcation parameter whose value
determines whether the system is stable or unstable. Intervals of
the bifurcation parameter over which stability/instability occur are
also easily obtained.
This paper deals with the stability of linear structural and

mechanical systems. However, it should be noted that while the
study of such linear systems is important in and of itself, it also
has considerable relevance when dealing with nonlinear systems.
This is because the stability of nonlinear systems is often estab-
lished by considering linearizations about their hyperbolic equilib-
rium points. Hence, the results obtained here have a significant
bearing on investigations of the stability of nonlinear structural
and mechanical systems as well.
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